Programme: Mechanical Engineering

Course: ADVANCED MECHANISM

Course Code: PGMED101T

Course Outcomes:

The Student would be able to:

PGMED101.1	Explain and discuss the concept of kinematic synthesis, class of mechanism and concept of transmission angle (L2, L6)
PGMED101.2	Apply kinematic synthesis to achieve acceptable linkage. Explain various constructions to find radius of curvature, centre of radius of curvature and determine the dimensions of the mechanism (L1, L2, L3, L5)
PGMED101.3	Discuss the approach for optimal synthesis for path generation problem (L6)
PGMED101.4	Discuss Kinematic analysis & synthesis of spatial mechanisms, (L6)
PGMED101.5	Discuss kinematics synthesis of Robot arms, What is forward and reverse Kinematics of serial Robot (L5, L6)

Prof. Syed Mohiuddin Subject coordinator Subject Code: - PGMED102T Subject: - Dynamics of Machinery

Course Outcomes:

CO	STATEMENT
CO102.1	Students will be able to understand, analyze and explain the
	effect of dynamic forces on various links of a mechanism.
CO102.2	Students will be able to do dynamics motion analysis which
	includes energy distribution method, the rate of change of
	energy method balancing of linkages by various methods and
	understand and explain balancing of linkages and flywheel
	requirement and variation mechanics
CO102.3	Students will be able to understand, explain and determine
	natural frequency of given system and balancing of rigid rotors.

Programme : Mechanical Engineering Design

Course : Mechanical Vibration

Course Code : PGMED103T

CREDITS : 04

Teaching Scheme Examination Scheme

Lectures: 4 Hours/Week Duration of Paper: 03 Hours University Assessment: 70 Marks College

Assessment: 30 Marks

Course Objectives and Expected Outcomes: The study of Vibration is concerned with understanding of cause of vibration in any system also it is concerned with determination of natural frequency for various degrees of freedom. The overall object of this course is to learn, understand meaning of vibration relevant to Mechanical system and Mechanics. It also helps to know Vibration Phenomenon for various continues and discrete system. This course includes various Vibration analysis techniques, Vibration response, longitudinal and transverse Vibration for various structures, Vibration Instrumentation devices, introduction of FFT analyzer and Noise Control techniques.

6. Irwin & Garf, industrial Noise & Vibration Control.

- 7. R.A. Collacott, Vibration Monitoring and diagnosis, John Willey, New York, 1979.
- 8. M. Petyt, Introduction to Finite Element Vibration Analysis Cambridge University Press, Cambridge 1990.

COURSE OUTCOME

The students will be able to

CO 1	Define, Classify, Analyze the causes and effects of vibration and formulate the Frequency response function-amplitude and phase plots, mechanical impedance and mobility.
CO 2 Analyze & Formulate the Duhamel's integral impulse response function spectra, Laplace and Fourier transform methods	
CO 3	Analyze & Formulate the Eigen values and Eigen formulation matrix iteration techniques – normal modes and orthogonality transient response of multidegree freedom system.
CO 4	Analyze & Formulate the Longitudinal and transverse vibration of beams-forced response of beams, Vibration of plates –finite element techniques in vibration analysis.
CO 5	Classify, Analyze the Vibration measuring instrumentation.
CO 6	Define, Classify, Analyze the Sound and Noise parameters, prorogation of sound noise in various machinery's noise measurements techniques. Noise Control Techniques, Sound absorption, sound insulation, methods.

	Targett M TECH
PROGRAM: MECHANICAL ENGINEERING DESIGN	DEGREE: M. TECH
	SEMESTER: II CREDITS: 04
COURSE: ROBOTICS	COURSE TYPE: CORE /ELECTIVE / BREADTH/ S&H
COURSE CODE: 2MED03 REGULATION: 2017	COURSE TITE: COILE / Teterial) hours/Week
COURSE AREA/DOMAIN: MECHANICAL ENGG.	CONTACT HOURS: 3+1 (Tutorial) hours/Week.
	LAB COURSE NAME (IF ANY): NO
CORRESPONDING LAB COURSE CODE (IF ANY): NO	Endedon

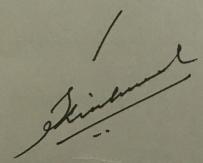
SYLLABUS:	HOURS
DETAILS 2MED - 03 ROBOTICS Basic concepts in Robotics: Advanced and applications of robotics of Robots, Resolution, Accuracy and Repeatability, Point, Continuous part system control loops, types of manipulators, wrist & Grippers. Kinematic Analysis of Robots. GBeometry based direct kinematics, Co-ordinate and vector transformation using matrix, Denant - hartenberg Convention, application of DH notation, Inverse Kinematics. Robot- An Dynamcis: Elementary treatment of Lagrange - Euler, Newton - Euler formulations, Generalised D Alembert equations of motion. Drives, Control of Trajectory: Hydraulic system stepper motor, Direct current servomotors, AC. servomotors, adaptive control, interpolators, trajectory planning, resolved motion rate control method. Robotic Sensors: Vision system, range, proximity, touch, force and torque sensors, Assembly-Aid devices, Robot programming, Artificial Intelligence. Application of Robot: Handling loading, unloading welding, Painting Assembly, Machining Manufacturing, Work- cell, Installation of Robots.	04 Hrs per Week
TOTAL HOURS	48
TOTAL HOOKS	

TEXT/REFERENCE BOOKS:

T/R		
T	M.P. Groover, M. Weiss, P.N. Nagal, and N.G Odrey, Industrial Robotics, Mc	
	Graw Hill International Deduction, 1986.	
T	M.P. Groover, M. Weiss, P.N. Nagal, and N.G Od.ey, Industrial Robotics, Mc	
	Graw Hill International Deduction, 1986.	
T	Fu. K. S., Gonzalez R. C. and Lee C. S. G., Robotics: Control sensing vision and intelligence, Mc Graw	
	Hill, 1987.	
T	D. T. Pham, Expert - System in Engineering, Springer Verlog, 1988.	
R	Anthony C., Mc Donald, Robot Technology, theory, design and applications, Prntice Hall, New Jersey,	
	1986.	
R	Yoren Koren, Robotes for engineers.	
	K. S. Fu, R.C. Gonzaler C.S.G. Lee, Robothes (Control, sensing vision & intelligence).	

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
	NA		
	NA		


COURSE OBJECTIVES:

1	To acquaint the students with importance of robotics in today and future goods production	
	To able to understand robot configuration and subsystems.	
3	To able to understand application of robot	
4	To acquire the knowledge on advanced algebraic tools for the description of motion	

COUSRE OUTCOMES

The student will be able to

- 1. define robots and their various characteristics
- 2. understand and analyze and solve problems on direct kinematics and inverse kinematics.
- 3. defend elementary treatment of Lagrange Euler, Newton –Euler formulations and D Alembert equations of motion.
- 4. to list and explain types of drives and define trajectory planning.
- 5. explain and select sensors for robots and classify programming techniques.
- 6. To list and select robots for various engineering fields applications.

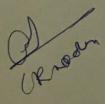
Anjuman College of Engineering and Technology, Nagpur

Course Outcomes

Program:-M. Tech. (Mechanical

Engineering Design)

Sem:-1st


Course/Course Code: Computer Aided mechanical Design

/PGMED104T

Course Coordinator: R.N.Dehankar

Academic year:-2017-18

CO	CO-STATEMENT
CO PGMED104T.1	Write & Explain how pixel position are located and displayed on computer screen in order to generate any basic geometric entities.
CO PGMED104T.2	Apply transformations on 2D & 3D objects, and determine the final state and shape of object.
CO PGMED104T.3	Explain the different geometric modeling techniques, synthetic curves & methods of assembly modeling. They can create any model using the same.
CO PGMED104T.4	To understand and write the algorithm for programming module for the design of various components like shaft, flywheel, gear, bearings etc.

3.1.1

Programme: Mechanical Engineering

Course: ADVANCED MECHANISM

Course Code: PGMED106P

Course Outcomes:

The Student would be able to:

CO106P.1	Explain the Synthesis of mechanism using function generation and path generation	
CO106P.2	Apply kinematic analysis and synthesis to generate 4-bar mechanism	
CO106P.3	Analyze special 4-bar mechanism	
CO106P.4	Synthesizebar mechanism using graphical approach	
CO106P.5	Explain kinematic Synthesis of robotic arm.	

Prof. Syed Mohiuddin Subject coordinator Programme:

Mechanical Engineering

Course:

Mechanical Vibrations

Course Code:

PGMED103P

Course Outcomes:

The Student would be able to:

PGMED103P1.1	Explain and discuss Vibration problems in engineering causes and effects of vibration relevance of vibration analysis.
PGMED103P1.2	Duhamel's integral impulse response function – shock spectra –Laplace and Fourier transform methods.
PGMED103P1.3	Matrix formulation Eigen values and Eigen formulation matrix iteration techniques
PGMED103P1.4	Longitudinal and transverse vibration of beams-forced response of beams. Vibration of plates –finite element techniques in vibration analysis.
PGMED103P1.5	Explain and discuss Vibration measurements instrumentation electrodynamics exciters – impact hammers piezoelectric accelerometers, digital Fourier transforms FFT analysis structural frequency response.
PGMED103P1.6	Sound and Noise parameters prorogation of sound noise in carious machinery's noise measurements techniques. Noise Control Techniques, Sound absorption, sound insulation, methods.

Prof. Jawwad A.K. Lodhi Subject coordinator

COURSE OUTCOMES

Program: Master of Technology (Mechanical Engineering Design)

Course: Advanced Mechanical Drives

Subject Code: PGMED201T

Course Coordinator: Mr. Gaurav S. Bhusari

Course Outcomes -The students will be able to understand critical and detailed analysis of various mechanical drives along with its Vibration analysis.

	Sr. No.	Description		
	CO 1	Belt Drives: Belt vibrations, additional stress due to vibration, modern development in toothed belt, fatigue, synchronization, slip due to wear. Dynamics & vibration of Arms of Pulleys		
	CO 2	Gears: Detailed dynamics of gear tooth, spur tooth vibrations, Estimation of additional stress under vibration. Fatigue in tooth due to contact stress. Exact estimation of gear meshes frequencies in signature analysis.		
	CO 3	Gear Boxes: Kinematic Analysis of complex gear trains, Force Analysis including gyroscopic effects, Vibration Analysis of Gearboxes, Lubrication Methods, Contamination of Lubrication Oils, wear debris analysis.		
	CO 4	Chain Drives: Detailed dynamics of chains considering Rolling friction of hanging portion of tracks, Resistance of sprocket bearings, Resistance due to chain stiffness, chain vibrations: Lateral & longitudinal, wear debris formation & effect on efficiency, impact loads in chains. Analysis of power & conveyor chains.		
9	CO 5	PIV Drives : Concept, Need, Classification & Types. Detailed kinematics & dynamics of 4/5 important drives.		
	CO 6	Couplings: Stress analysis of coupling bolts during one rotation, Rubbing of coupling pins & its effect on signature, Analysis due to misalignment, Degree of shock absorption due to flexible elements in flexible couplings.		

: Mechanical Engineering Design Programme

: Stress Analysis Course

: PGMED202T Course Code

: 04 **CREDITS**

Teaching Scheme Examination Scheme

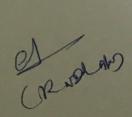
Lectures: 4 Hours/Week Duration of Paper: 03 Hours University Assessment: 70 Marks College

Assessment: 30 Marks

Course Objectives and Expected Outcomes: The overall objectives of this course is to understand the fundamental of stress and strain, application of equation of equilibrium, compatibility, Airy's stress function for determining stress field in Cartesian coordinate and polar co-ordinate for two dimensional problems, various methods of experimental stress analysis using strain gauges, strain rosettes and photo elasticity, evaluation of thermal loads and thermal stress in simple object and given systems, fundamental of fracture mechanics.

COURSE OUTCOME

The students will be able to


CO202. 1	Define, Classify, Analyze fundamentals of stress & strain, relationship, Elastic constant, plane stress & strain and formulate equations of Equilibrium, compatibility equation, Airy's stress function.
CO202. 2	Classify, Analyze & Formulate the two dimensional problems in polar co- ordinates, general equations in polar co-ordinates for any symmetric case, pure bending of curved beams
CO202.3	Analyze & Formulate torsion of non circular section
CO202. 4	Analyze & Formulate Experimental stress analysis by strain gauge & photo elasticity technique as well as Classify strain rosettes, recording Instruments & fringes.
CO202, 5	Analyze beams under thermal load & Formulate Thermo elasticity in thin circular discs, turbine rotors etc.
CO202. 6	Define, Classify, Analyze fracture Mechanics

PROGRAM: Mechanical Engineering Design	DEGREE: M.Tech.	
COURSE: Design of Mechanical Handling System	SEMESTER: II CREDITS:	
COURSE CODE: PGMED203T REGULATION:	COURSE TYPE: CORE	
COURSE AREA/DOMAIN:	CONTACT HOURS: 4hours/Week.	
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME (IF ANY):	Print and the

COURSE OUTCOMES:

SNO	DESCRIPTION
PGMED203T . 1	The study of Design of various Mechanical handling systems is concerned with understanding of various industrial system and devices with its basic design.
PGMED203T . 2	Constructional features, operation, operational characteristics advantages Disadvantages, limitations, Design considerations of conveying machines.
PGMED203T . 3	Design of Belt conveyers , chain conveyers, Roller conveyers, (Gravity & Powered)
PGMED203T .4	Design of Screw conveyers, Tubular screw conveyers, Escalators, Vibrating conveyers, (Crank type & spring type), Pneumatic conveying.

Programme: Mechanical Engineering

Course: Foundation Course I: Research Methodology

Course Code: PGHPE205T

Course Outcomes:

The Student would be able to:

CO1	Bloom Level	Knowledge on various kinds of research problems and research	
CO2	1,2	designs Formulate research problems (task) and develop research design	
CO3	3	Asses the appropriateness of different kinds of research designs	
CO4	1,2	Knowledge on qualitative ,quantitative and mixed methods of research as well as relevant ethical and philosophical considerations	
CO5	4 .	Develop independent thinking for analyzing research reports.	

(,),

Subject Teacher

Dr.Leena Gahane

Programme : Mechanical Engineering Design

Course : Stress Analysis

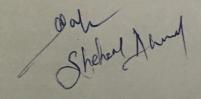
Course Code : PGMED206P

CREDITS : 01

CO206.1	Study of compatibility equation in Cartesian co-ordinate.
CO206.2	Study of two dimensional problems in polar co-ordinates.
CO206.3	Study of St. Venants theory
CO206.4	Study of electric resistance strain gauge, gauge circuit, calibration of different photo elastic material and determination of material fringe value by using diffused liquid research Polaris cope.
CO206.5	Study of beam under thermal load.
CO206.6	Study of fracture mechanics.

Prof. Bilal Abdullah Baig

(Mech Dept)


PGMED204T

Elective -III (Discipline) Tribology and Bearing Design

CREDITS: 04

Course Outcomes: Students will be able to

СО	DESCRIPTION	KEYWORD	LEVEL OF BLOOM'S TAXONOMY
PGMED204T.1	Understand & Explain Basic Principles of friction, wear & lubrication & its interrelation with tribology.	Understand, Explain	2
PGMED204T.2	& Derivations involved in infinite & finite – hydrostatic & hydrodynamic bearings.	Explain	2
PGMED204T.3	Hydrodynamic Lubrication, Rolling Motion & Tire Road Interaction.	Explain	2
PGMED204T.4	Understand the tribolgical aspects in Aerostatic, Gas Bearing & Wheel on Rail Contact.	Explain	2

	DEGREE: M.Tech
Docign (MFD)	DEGREE: M. Tech
PROGRAM: Mechanical Engineering Design (MED)	SEMESTER: II CREDITS: 01
	SEMESTER: II CREDITS. 01
COURSE: FINITE ELEMENT ANALYSIS	COURSE TYPE:
PROLIT ATION: Fulltime	COURSE I II E.
COURSE ADEA/DOMAIN: MACHINE DESIGN /CAD/CAE	CONTACT HOURS: 2 Hours/Week
COURSE AREA/DOMAIN: MACHINE DESIGN/CAD/CAL	

C	COURSE OUTCOMES: DESCRIPTION		PO(112) & PSO(12)
	SNO .	DESCRIPTION	MAPPING
		1 1 1 1 Maring ANGVS coftware	PO1,2,3,5,8,9,10,12
C	0802.1	Understand the basics of analysis by using ANSYS software	PSO1,2,3
		(L1,2)	
		Understand and Explain preprocessor, processor(Solution) and	PO1,5,8,9,10,11,12,
C	0802.2		PSO1,2,3
		postprocessor in ANSYS(L1,2)	
		26 11 6 1 1 and making using commercial software and	PO1,2,3,4,5,8,9,10,11,1
C	0802.3	Model finite element problems using commercial software and	2, PSO1,2,3
		understand the fundamental use of finite element	
		preprocessor.(L1,2,3)	
			PO1,2,3,,4,5,8,9,10,11,1
C	CO802.4	Evaluate and interpret FEA analysis results for design and	2, PSO1,2,3
		evaluation.(L1,2,3,5)	
1			PO1,2,3,4,5,8,9,10,12,
C	0802.5	Evaluate the aspects of finite element formulation for solving	PSO1,2,3
		engineering problems(L1,2,3,4,5)	
1			

PROGRAM: MECHANICAL ENGINEERING	DEGREE: PG
COURSE: Foundation Courses –II (PROJECT PLANNING, EVALUATION & MANAGEMENT)	SEMESTER: CREDITS: 04
COURSE CODE: PGMED302T REGULATION:	COURSE TYPE: CORE
COURSE AREA/DOMAIN:	CONTACT HOURS: 4 hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME (IF ANY):

COURSE OUTCOMES:

	COUNCE COTTON		
1	SNO	DESCRIPTION.	
	CO	Students will be able to Develop a basic needs assessment for a proposed	
	MED3	project, by analyzing the different phases of project, impacts of delays and	
	02.1	essentials of project(L3, L4)	
	СО	Students will be able to Select and Develop a project proposal by	
7	MED3	identifying the different processes and applying organizational structural	
	02.2	concept(L3)	
	CO	Students will be able to Develop a logical framework and project budget by	
MED3 Students will be able to bevelop a logical framework and risks (L3, L		Evaluating the cost estimate, resources, schedules and risks.(L3, L5)	
	02.3	Evaluating the cost estimate, resources, seneralise and	
	СО		
	MED3	Develop measureable indicators for quality assessment. (L6)	
	02.4		
	СО	Students will be able to Formulate the Monitoring and Evaluation into a	
	MED3	project, Develop a grant proposal, evaluate the various project closing	
	02.5	conditions and recommend the project closure. (L6, L3, L5)	

Programme:

Mechanical Engineering

Course:

Finite Element Analysis

Course Code:

PGMED301T

Course Outcomes:

The Student would be able to:

PGMED301T1.1	Explain and discuss the finite element method, review of Basic concepts of elasticity, principle of minimum potential energy, principle of virtual displacements.
PGMED301T1.2	Boundary value problems, approximate method of solution, review of variational calculus, the Euler-Lagrange equations, method of weighted residuals. Raleigh Ritz and Galerkin methods –finite element formulations the finite element basis, displacement models.
PGMED301T1.3	Parameters functions, one dimensional element, global coordinates, natural co-ordinates, three dimensional elements, four nodded tetrahedral element. two dimensional elements, three nodded triangular and four nodded quadrilateral elements,
PGMED301T1.4	Formulations and shape functions for one dimensional, two dimensional and three dimensional elements, numerical quadrate formulae, Jacobean matrices and transformations.
PGMED301T1.5	Explain and discuss Formulation of the problems of axial, tensional and flexural deformations of beams, plane stress, plane strain and axis symmetric problems.

Prof. Jawwad A.K. Lodhi Subject coordinator

PROGRAM: MECHANICAL ENGINEERING	DEGREE: M.TECH.(MECHANICAL ENGINEERING DESIGN)
COURSE: PROJECT SEMINAR /PROJECT	SEMESTER: VIII CREDITS: 04
COURSE CODE: PGMED303P / PGMED401P REGULATION: 2015	COURSE TYPE: CORE /ELECTIVE / BREADTH/ S&H
COURSE AREA/DOMAIN: MECHANICAL ENGINEERING	CONTACT HOURS: 06 hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY): YES	LAB COURSE NAME (IF ANY): YES

SYLLABUS:

Research Concept:- process of growth of knowledge Mechanical & Industrial Engineering Department generation/realization of new facts, Establishing logic for the generated facts, Scope of quantification of cause effect relationship, Evaluation of hypotheses. Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field studies, Critical analysis of generated facts. Hypothetical proposals for future	
Engineering Department generation/realization of new facts, Establishing logic for the generated facts, Scope of quantification of cause effect relationship, Evaluation of hypotheses. Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field	
Department generation/realization of new facts, Establishing logic for the generated facts, Scope of quantification of cause effect relationship, Evaluation of hypotheses. Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field	
facts, Scope of quantification of cause effect relationship, Evaluation of hypotheses. Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field	
quantification of cause effect relationship, Evaluation of hypotheses. Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field	
Approach Of Formulation Of The Research Task: - Literature review: Sources, Discussions Field	
Discussions Field	
studies, Critical analysis of generated facts. Hypothetical proposals for future	
development, Constraints for	
proposal selection, Prioritization.	
Research Approaches: Conceptual research, Theoretical research, applied research,	
Experimental research:	
Experimental validation of proposed logic, Experimentation to generate design data.	
Modeling & Simulation: Concept of modeling, Concept of simulation, Types of	6 Hrs
simulation (quantitative	
experimental, Computer, Fuzzy based, statistical process of Model optimization.	per week
Formulation of Hypothesis	week
Literature survey work of the topic selected for dissertation	
References:	
1. T.S. Wilkinson & P.L. Bhandarkar, Methods & Techniques of Social Research	
Himalaya	
Publishing, Bombay.	
2. Averill M.Law & W. David Kelton —Simulation Modelling & Analysis	
3. H. Schenck, Jr. —Theories of Engg. Experimentation Mc-graw Hill —Design of	
Experiments	
Montgomery.	
4. Bart Kasko & Klir —Nural Network & Fuzzy Systems Prentice Hall T.J.Roft"	
Fuzzy logic with Engg	
Application — Tata mc-Graw Hill — Fuzzy sets, Uncertainties & Information Prentice	
Hall.	
5. S.S. Rao —Optimization Theory & Applications Wiley Eastern Back Volimes of	
Journal	
6. —Modelling & Simulation AMSE Press France.	
TOTAL HOURS	06

COURSE OUTCOMES:

The student will be able to:

SNO	DESCRIPTION	PO(112) & PSO(12) MAPPING
CO806P.01	Take a specific problem right from its identification and literature review till the successful solution of the same	1,3
CO806P.02	Take up any challenging practical problems and find solution by using research methodology.	1,3
CO806P.03	Develop a skill to accomplish any task and present seminar in front of departmental committee members along with guide.	1,3
CO806P.04	Confident enough to prepare project reports and published papers in journals.	1, 3
CO806P.05	Face reviews and viva voce examination in front of the panel of experts and continuously develop one's own knowledge.	1,2,3